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Abstract. We present a free boson realization of the vertex operators and their duals for the
solvable SOS lattice model ofA(1)

n−1 type. We discuss a possible connection with the calculation
of correlation functions.

1. Introduction

The vertex operator approach [1–3] provides a powerful method for the study of correlation
functions of solvable lattice models. It was originally formulated for vertex-type models,
and then extended [4, 5] to incorporate face-type models such as the Andrews–Baxter–
Forrester (ABF) model [6]. In particular it was shown that, in much the same way as with
vertex models, correlation functions of the face models are given as traces of products of
vertex operators, and are described in terms of a system of difference equations having
the Boltzmann weights as coefficients. The most effective way of solving these difference
equations is to realize the vertex operators in terms of bosonic free fields. For face-type
models, such a realization had not been known, and it had remained an open question to
give solutions to the difference equations. This problem was solved in a recent paper [7],
on the basis of the ideas developed in [8, 9]. In particular, integral formulae were given for
multi-point correlation functions of the ABF models.

The present paper can be viewed as a continuation of [7]. Here we deal with theA
(1)

n−1
face model [10], the ABF model being then = 2 case. With the aid of the oscillators and
screening currents introduced in [11, 12] in connection with theq-deformedW -algebras,
we write down a bosonic realization of the vertex operators for theA

(1)

n−1 face model. In
order to write down the correlation functions, we need the ‘dual’ vertex operators as well.
This problem was absent for the ABF models, since the vertex operators are self-dual in
that case. We construct such dual operators by the (skew-symmetric) fusion of the ordinary
vertex operators. The construction of vertex operators and their duals is the main result of
this paper. These operators are realized on a direct sum of Fock spaces, which is bigger
than the actual space of states of the model. The latter should be realized as the cohomology
of the BRST complex, as was done in the ABF case in [7]. We do not address this issue in
this paper.

The text is organized as follows. In section 2 we recall theA
(1)

n−1 face model, and
introduce the vertex operators along with their commutation relations. In section 3 we
present the bosonization of the vertex operators and their duals. Section 4 is devoted to
discussions and open problems. We defer some technical points to the appendices. In
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appendix A we give a graphical interpretation of the vertex operators and their duals, and
explain how the correlation functions can be expressed in their terms. In appendix B we
prove that the bosonic formulae for the vertex operators satisfy the correct commutation
relations given in section 2. In appendix C we give a proof of the bosonization formula in
section 3 for the dual vertex operators.

2. Commutation relations of vertex operators for theA(1)

n−1 face model

Here we write the commutation relation of the vertex operators for theA
(1)

n−1 face model. We
also construct the anti-symmetric fusion of vertex operators and derive their commutation
relation.

2.1. TheA(1)

n−1 face model

After introducing notation, we recall theA(1)

n−1 face model [10].
Let εµ(1 6 µ 6 n) be the orthonormal basis inRn. We have the inner product

〈εµ, εν〉 = δµν . Set

ε̄µ = εµ − ε ε = 1

n

n∑
µ=1

εµ . (2.1)

The typeA
(1)

n−1 weight lattice is the linear span of thēεµ

P =
n∑

µ=1

Zε̄µ . (2.2)

Note that
∑n

µ=1 ε̄ν = 0. Let ωµ(1 6 µ 6 n− 1) be the fundamental weights

ωµ =
µ∑

ν=1

ε̄ν

andαµ(1 6 µ 6 n− 1) the simple roots

αµ = εµ − εµ+1 .

For a ∈ P we set

aµν = 〈a + ρ, εµ − εν〉
whereρ =∑n−1

µ=1 ωµ.
An ordered pair(b, a) ∈ P 2 is called admissible if and only if there existsµ(1 6 µ 6 n)

such that

b − a = ε̄µ .

We represent it as

b a .�µ

An ordered set of four weights(a, b, c, d) ∈ P 4 is called an admissible configuration
around a face if and only if the pairs(b, a), (c, b), (d, a) and (c, d) are admissible. We
represent this as

c d

b a .

� κ

6
µ

�
ν

6
λ
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Suppose that

b − a = ε̄ν c − b = ε̄µ d − a = ε̄λ c − d = ε̄κ . (2.3)

There are three cases:

case (i) µ = ν = κ = λ

case (ii) µ = λ, ν = κ (µ 6= ν)

case (iii) µ = κ, ν = λ (µ 6= ν) .

With each admissible configuration around a face we associate the Boltzmann weight as
follows.

We will use the following abbreviation:

[v] = x(v2/r)−v2x2r (x2v) . (2.4)

Here,r is an integer such thatr > n + 2, andx is a parameter such that 0< x < 1. We
fix r, x throughout the paper. We have also used

2q(z) = (z; q)∞(qz−1; q)∞(q; q)∞ (2.5)

(z; q1, . . . , qm)∞ =
∞∏

i1,...,im=0

(1− q
i1
1 · · · qim

m z) . (2.6)

The Boltzmann weight associated with the configuration (2.3) is denoted by

W

(
c d

b a

∣∣∣∣v)
(2.7)

and is given by

W

(
a + 2ε̄µ a + ε̄µ

a + ε̄µ a

∣∣∣∣v)
= r1(v) (2.8)

W

(
a + ε̄µ + ε̄ν a + ε̄µ

a + ε̄ν a

∣∣∣∣v)
= r1(v)

[v][aµν − 1]

[v − 1][aµν ]
(2.9)

W

(
a + ε̄µ + ε̄ν a + ε̄ν

a + ε̄ν a

∣∣∣∣v)
= r1(v)

[v − aµν ][1]

[v − 1][aµν ]
. (2.10)

These weights satisfy the Yang–Baxter equation∑
g

W

(
d e

c g

∣∣∣∣u1

)
W

(
c g

b a

∣∣∣∣u2

)
W

(
e f

g a

∣∣∣∣u1− u2

)
(2.11)

=
∑

g

W

(
g f

b a

∣∣∣∣u1

)
W

(
d e

g f

∣∣∣∣u2

)
W

(
d g

c b

∣∣∣∣u1− u2

)
. (2.12)

The normalization factorr1(v) is determined by the condition that the partition function per
face is equal to 1. The method of computation is standard (see, e.g., [13]). It is based on
the following two equations called the inversion relations, which restrictr1(v).

The first inversion relation is∑
g

W

(
c g

b a

∣∣∣∣− v

)
W

(
c d

g a

∣∣∣∣v)
= δbd . (2.13)
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The second inversion relation is∑
g

GgW

(
g b

d c

∣∣∣∣n− v

)
W

(
g d

b a

∣∣∣∣v)
= δac

GbGd

Ga

. (2.14)

where

Ga =
∏
µ<ν

[aµν ] .

We consider the model in the so-called regime III, i.e. 0< v < 1. In this regime the
partition function is given by them = 1 case of the following definition:

rm(v) = z((r−1)/r)(n−m)/n gm(z−1)

gm(z)
(z = x2v) (2.15)

gm(z) = {x
m+1z}{x2r+2n−m−1z}
{x2r+m−1z}{x2n−m+1z} (2.16)

{z} = (z; x2r , x2n)∞ . (2.17)

2.2. Commutation relations

Following the general principle of the algebraic approach in solvable lattice models, we
give the commutation relation of the vertex operators for theA

(1)

n−1 face model.
Consider the operator symbolφ(b,a)

µ whereb = a + µ, and call it the vertex operator
from a to b. In section 3, we will give a realization ofφ(b,a)

µ in terms of bosons. In this
section we treat them symbolically.

We consider the following commutation relation:

φ(c,b)
µ (v1)φ

(b,a)
ν (v2) =

∑
d

W

(
c d

b a

∣∣∣∣v1− v2

)
φ(c,d)

κ (v2)φ
(d,a)
λ (v1) . (2.18)

Note that for case (i) for (2.3) the sum is only ford = b, while for cases (ii) and (iii)
they mix together.

In appendix A we give the identification of (2.18) with the commutation relation of the
half transfer matrix, which motivates our investigation. The aim of this paper is to give a
bosonization of (2.18). This is done in section 3.

2.3. Fusion of the Boltzmann weights

We define the fused Boltzmann weights and give the relation between the fused weights
and the original ones.

Let us define three types of fused weights. The first one is obtained by fusion in the
horizontal direction, the second in the vertical direction, and the third in both directions.
We first prepare three types of admissible configurations around a face.

Definition 2.1.

(a, b, c, d) ∈ P 4 is h-admissible (2.19)

def⇐⇒b − a = −ε̄ν , c − b = ε̄µ, d − a = ε̄κ , c − d = −ε̄λ for someν, µ, κ, λ.

(a, b, c, d) ∈ P 4 is v-admissible (2.20)
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def⇐⇒b − a = ε̄ν , c − b = −ε̄µ, d − a = −ε̄κ , c − d = ε̄λ for someν, µ, κ, λ.

(a, b, c, d) ∈ P 4 is ∗-admissible (2.21)

def⇐⇒b − a = −ε̄ν , c − b = −ε̄µ, d − a = −ε̄κ , c − d = −ε̄λ for someν, µ, κ, λ.

Given ν ∈ {1, . . . , n}, let ν1, . . . , νn−1 ∈ {1, . . . , n} be such thatν1 < · · · < νn−1 and
{ν, ν1, . . . , νn−1} = {1, . . . , n}. We denote(ν1, . . . , νn−1) by ν̂. Note thatb − a = −ε̄ν is
equivalent tob − a =∑n−1

i=1 ε̄νi
. We represent it graphically as

b a .pppppppppppppppppp�ν̂=(ν1,...,νn−1)

For a h-admissible quadruple(a, b, c, d), define the fused Boltzmann weightWh as
follows:

Wh

(
c d

b a

∣∣∣∣u)
=

∑
σ∈Sn−1

sgnσ

c · · · d

b · · · a

�λ1

u−1+ n
2

�λ2

u−2+ n
2

�λn−1

u+1− n
2

6
µ

�
νσ(1)

6

�
νσ(2)

6 6

�
νσ(n−1)

6
κ

= w
∑

σ∈Sn−1

sgnσ

n−1∏
i=1

W

(
ci ci+1

bσ
i bσ

i+1

∣∣∣∣u+ n

2
− i

)
(2.22)

where

ci = c − ε̄λ1 − · · · − ε̄λi−1 (c1 = c, cn = d)

bσ
i = b − ε̄νσ(1)

− · · · − ε̄νσ(i−1)
(bσ

1 = b, bσ
n = a) .

(2.23)

Likewise, for a v-admissible(a, b, c, d), define

Wv

(
c d

b a

∣∣∣∣u)
=

∑
σ∈Sn−1

sgnσ

d · · · a

c · · · b
?

λ

�κ1

u+1− n
2

?

�κ2

u+2− n
2

? ?

�κn−1

u−1+ n
2

?
ν

�
µσ(1)

�
µσ(2)

�
µσ(n−1)

=
∑

σ∈Sn−1

sgnσ

n−1∏
j=1

W

(
cσ
j dj

cσ
j+1 dj+1

∣∣∣∣u− n

2
+ j

)
(2.24)

where

cσ
j = c − ε̄µσ(1)

− · · · − ε̄µσ(j−1)

dj = d − ε̄κ1 − · · · − ε̄κj−1.
(2.25)

Finally, for a∗-admissible(a, b, c, d), define

W∗(
c d

b a
|u) =

∑
σ∈Sn−1

sgnσ

c · · · d

b · · · a

�λ1

u−1+ n
2

�λ2

u−2+ n
2

�λn−1

u+1− n
2pppppp

p
6

µ̂

�
νσ(1)

pppppp
p
6

�
νσ(2)

pppppp
p
6 pppppp

p
6

�
νσ(n−1)

pppppp
p
6̂
κ

=
∑

σ∈Sn−1

sgnσ

n−1∏
i=1

Wv

(
ci ci+1

bσ
i bσ

i+1

∣∣∣∣u+ n

2
− i

)
(2.26)
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=
∑

σ∈Sn−1

sgnσ

d · · · a

c · · · b

ppppppp?λ̂

�κ1

u+1− n
2

ppppppp?
�κ2

u+2− n
2

ppppppp?
ppppppp?
�κn−1

u−1+ n
2

ppppppp?ν̂
�

µσ(1)

�
µσ(2)

�
µσ(n−1)

=
∑

σ∈Sn−1

sgnσ

n−1∏
j=1

Wh

(
cσ
j dj

cσ
j+1 dj+1

∣∣∣∣u− n

2
+ j

)
. (2.27)

Proposition 2.2.We have the following formulae for the fused Boltzmann weights.:

c d

b a

ppppppp� λ̂

n
2 − u

ppppppp�
6

µ ppppppp�
ν̂

6
κ = (−1)λ+ν+n−1 Gb

Gc

c d

b a

-λ

u
6

µ

-
ν

6
κ (2.28)

c d

b a

�λ

n
2 − upppppp

p
6

µ̂

�
ν

pppppp
p
6̂
κ = (−1)µ+κ+n−1 Gb

Ga

c d

b a
?

µ

?
κ

�λ

u

�
ν

(2.29)

c d

b a

ppppppp� λ̂

upppppp
p
6

µ̂ ppppppp�
ν̂

pppppp
p
6̂
κ = Gb

Gd

c d

b a
?

µ

-λ

u

?
κ

-
ν

. (2.30)

For instance, equation (2.28) means that

Wh

(
c d

b a

∣∣∣∣n2 − u

)
= (−1)λ+ν+n−1 Gb

Gc

W

(
d a

c b

∣∣∣∣u)
.

In the calculation we used
n−1∏
i=1

r1

(
u+ i − n

2

)
= (−1)n−1 [ n−2

2 − u]

[ n−2
2 + u]

rn−1(u) (2.31)

n−1∏
i=1

rn−1

(
u+ i − n

2

)
= r1(u) (2.32)

rn−1(u)
[ n−2

2 − u]

[u− n
2]
= r1

(n

2
− u

)
. (2.33)

In the above, we considered the anti-symmetric fusion ofn − 1 times. In appendix C
we also need the anti-symmetric fusion ofm times for 26 m 6 n − 2. The definition of
weight reads as

c d

b a

pppppppppppppppppp� (λ1,...,λm)

6
µ pppppppppppppppppp�

(ν1,...,νm)

6
κ
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=
∑
σ∈Sm

sgnσ

c · · · d

b · · · a

�λ1

u+ m−1
2

�λ2

u+ m−3
2

�λm

u− m−1
2

6
µ

�
νσ(1)

6

�
νσ(2)

6 6

�
νσ(m)

6
κ . (2.34)

It is anti-symmetric with respect to(ν1, . . . , νm) by the definition. In fact, it is also anti-
symmetric with respect to(λ1, . . . , λm).

The vertical fusion is similarly defined by takingu− m−1
2 , u− m−3

2 , . . . , u+ m−1
2 to be

the spectral parameters (see (2.24) for the casem = n− 1).
The result is as follows:

c d

b a

pppppppppppppppppp� (λ1,...,λm)

6
λ pppppppppppppppppp�

(λ1,...,λm)

6
λ = (−1)m−1rm(u)

[u− m−1
2 ]

[u− m+1
2 ]

m∏
i=1

[aλλi
− 1]

[aλλi
]

(2.35)

c d

b a

pppppppppppppppppp� (λ1,...,λm−1,λ)

6
λ pppppppppppppppppp�

(λ1,...,λm)

6
λm = (−1)m−1rm(u)

[u− m−1
2 − aλλm

][1]

[u− m+1
2 ][aλλm

]

m−1∏
i=1

[aλλi
− 1]

[aλλi
]

(2.36)

c d

b a

pppppppppppppppppp� (λ1,...,λm)

6
λm pppppppppppppppppp�

(λ1,...,λm)

6
λm = (−1)m−1rm(u)

m−1∏
i=1

[aλmλi
]

[aλmλi
+ 1]

(2.37)

c d

b a
?

λ

pppppppppppppppppp� (λ1,...,λm)

?
λpppppppppppppppppp�

(λ1,...,λm)

= (−1)m−1rm(u)
[u− m−1

2 ]

[u− m+1
2 ]

m∏
i=1

[aλλi
+ 1]

[aλλi
]

(2.38)

c d

b a
?

λ1

pppppppppppppppppp� (λ,λ2,...,λm)

?
λmpppppppppppppppppp�

(λ1,...,λm)

= (−1)mrm(u)
[u− m−1

2 + aλλ1][1]

[u− m+1
2 ][aλλ1]

m∏
i=2

[aλλi
+ 1]

[aλλi
]

(2.39)

c d

b a
?

λ1

pppppppppppppppppp� (λ1,...,λm)

?
λ1pppppppppppppppppp�

(λ1,...,λm)

= (−1)m−1rm(u)

m∏
i=2

[aλ1λi
+ 1]

[aλ1λi
]

. (2.40)

2.4. Dual vertex operators and commutation relations

We introduce the dual vertex operatorsφ∗λ(v) and write down the commutation relations
between them in terms of the fused Boltzmann weights.
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Definition 2.3.Suppose that(λ1, . . . , λm) are distinct andb − a =∑m
i=1 ε̄λi

. We define

φ
(b,a)

(λ1,...,λm)(v) =
∑
σ∈Sm

sgnσφλσ(1)

(
v − m− 1

2

)
φλσ(2)

(
v − m− 3

2

)

· · ·φλσ(m)

(
v + m− 1

2

)

=

∣∣∣∣∣∣∣∣∣∣

φλ1

(
v − m−1

2

)
φλ1

(
v − m−3

2

) · · · φλ1(v + m−1
2 )

φλ2

(
v − m−1

2

)
φλ2

(
v − m−3

2

) · · · φλ2(v + m−1
2 )

...
...

. . .
...

φλm

(
v − m−1

2

)
φλm

(
v − m−3

2

) · · · φλm
(v + m−1

2 )

∣∣∣∣∣∣∣∣∣∣
. (2.41)

We also define

φ
∗(b,a)
λ (v) = φ

(b,a)

λ̂
(v) . (2.42)

Proposition 2.4.The notation being as in (2.19)–(2.21), we have

φ(c,b)
µ (v1)φ

∗(b,a)
ν (v2) =

∑
d

Wh

(
c d

b a

∣∣∣∣v1− v2

)
φ
∗(c,d)
λ (v2)φ

(d,a)
κ (v1) (2.43)

φ∗(c,b)
µ (v1)φ

(b,a)
ν (v2) =

∑
d

Wv

(
c d

b a

∣∣∣∣v1− v2

)
φ

(c,d)
λ (v2)φ

∗(d,a)
κ (v1) (2.44)

φ∗(c,b)
µ (v1)φ

∗(b,a)
ν (v2) =

∑
d

W∗

(
c d

b a

∣∣∣∣v1− v2

)
φ
∗(c,d)
λ (v2)φ

∗(d,a)
κ (v1) . (2.45)

3. Bosonization of vertex operators

3.1. Bosons

Consider the bosonic oscillatorsβj
m (1 6 j 6 n − 1, m ∈ Z\{0}) with the commutation

relations

[βj
m, βk

m′ ] = m
[(n− 1)m]x

[nm]x

[(r − 1)m]x
[rm]x

δm+m′,0 (j = k) (3.1)

= −mxsgn(j−k)nm [m]x
[nm]x

[(r − 1)m]x
[rm]x

δm+m′,0 (j 6= k) . (3.2)

Here the symbol [a]x stands for(xa − x−a)/(x − x−1). Defineβn
m by

n∑
j=1

x−2jmβj
m = 0 . (3.3)

Then the commutation relations (3.1), (3.2) are valid for all 16 j, k 6 n. These oscillators
were introduced in [11, 12].

We also introduce the zero mode operatorsPα, Qα indexed byα ∈ P = ⊕n−1
i=1 Zωi . By

definition they areZ-linear in α and satisfy

[iPα, Qβ ] = 〈α, β〉 (α, β ∈ P) .
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We shall deal with the bosonic Fock spacesFl,k (l, k ∈ P ) generated byβj
−m (m > 0)

over the vacuum vectors|l, k〉:
Fl,k = C[{βj

−1, β
j

−2, . . .}16j6n]|l, k〉
where

βj
m|k, l〉 = 0 (m > 0)

Pα|l, k〉 =
〈
α,

√
r

r − 1
l −

√
r − 1

r
k

〉
|l, k〉

|l, k〉 = exp

(
i

√
r

r − 1
Ql − i

√
r − 1

r
Qk

)
|0, 0〉 .

3.2. Basic operators

For j = 1, . . . , n− 1 define

U−αj
(z) = exp

(
i

√
r − 1

r
(Qαj
− iPαj

logz)

)
: exp

(∑
m6=0

1

m
(βj

m − βj+1
m )(xj z)−m

)
: (3.4)

Uωj
(z) = exp

(
−i

√
r − 1

r
(Qωj

− iPωj
logz)

)
: exp

(
−

∑
m6=0

1

m

j∑
k=1

x(j−2k+1)mβk
mz−m

)
: .

(3.5)

Note that

exp

(
i

√
r − 1

r
(Qβ − iPβ logz)

)
= z((r−1)/2r)〈β,β〉 exp

(
i

√
r − 1

r
Qβ

)
z
√

(r−1)/r Pβ .

Up to a power ofz, the operatorsU−αj
(z) are the screening currents for the quantumW -

algebras in the sense of [11, 12]. In view of (3.3) andωn = ε̄1 + · · · + ε̄n = 0, we set
Uωn

(z) = 1. We shall often use the variablev such thatz = x2v, and write

ξj (v) = U−αj
(z) ηj (v) = Uωj

(z) .

We shall need the following commutation relations between them:

η1(v)ηj (v
′) = rj (v − v′)ηj (v

′)η1(v) (3.6)

ξj (v)ηj (v
′) = −f (v − v′, 0)ηj (v

′)ξj (v) (3.7)

ξj (v)ξj+1(v
′) = −f (v − v′, 0)ξj+1(v

′)ξj (v) (3.8)

ξj (v)ξj (v
′) = h(v − v′)ξj (v′)ξj (v) . (3.9)

All other combinations mutually commute, except forηj (v)ηk(v
′). Hererj (v) is given by

(2.15), and

f (v, w) = [v + 1
2 − w]

[v − 1
2]

(3.10)

h(v) = [v − 1]

[v + 1]
. (3.11)
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3.3. Vertex operators

In what follows we set

πµ =
√

r(r − 1)Pε̄µ
πµν = πµ − πν .

Thenπµν acts onFl,k as an integer〈εµ − εν, rl − (r − 1)k〉.
The commutation relations presented in section 2 can be realized in the form of screened

vertex operators. Forµ = 1, . . . , n define

φµ(v) =
∮ µ−1∏

j=1

dzj

2π izj
η1(v)ξ1(v1) · · · ξµ−1(vµ−1)

µ−1∏
j=1

f (vj − vj−1, πjµ) (3.12)

= (−1)µ−1
∮ µ−1∏

j=1

dzj

2π izj
ξµ−1(vµ−1) · · · ξ1(v1)η1(v)

µ−1∏
j=1

f (vj−1− vj , 1− πjµ) . (3.13)

Here we setv0 = v, zj = x2vj . The equality of (3.12) and (3.13) follows from the
commutation relations (3.6)–(3.9) and

f (v, 0)f (−v, w) = f (v, 1− w) .

From the contraction rules ofξj (v), ηj (v) given in (C.1)–(C.7), we find that on eachFl,k

the integrand of (3.12) comprises only integral powers ofzj (1 6 j 6 µ−1), and that it has
poles atzj = x1+2rkzj−1, x

−1−2rkzj−1 (k = 0, 1, 2, . . .). We take the integration contours to
be simple closed curves around the origin satisfying

x|zj−1| < |zj | < x−1|zj−1| (j = 1, . . . , µ− 1) .

Theorem 3.1.The operators (3.12) satisfy the commutation relations (2.18).

The proof is given in appendix B.
Likewise define

φ̄∗(m−1)
µ (v) = c−1

m

∮ m−1∏
j=µ

dzj

2π izj
ηm−1(v)ξm−1(vm−1) · · · ξµ(vµ)

m∏
j=µ+1

f (vj−1− vj , πµj )

(3.14)

= (−1)m−µc−1
m

∮ m−1∏
j=µ

dzj

2π izj
ξµ(vµ)

· · · ξm−1(vm−1)ηm−1(v)

m∏
j=µ+1

f (vj − vj−1, 1− πµj ) (3.15)

wherevm = v and

x|zj+1| < |zj | < x−1|zj+1| (j = µ, . . . , m− 1) .

For convenience we have included a constantcj given by

cj = x((r−1)/r)j (j−1)/2n gj−1(x
j )

(x2; x2r )
j
∞(x2r; x2r )

2j−3
∞

. (3.16)

Consider the ‘fused’ operators defined as minor determinants ofφµ(v) (see
equation (2.41)):

φ∗(m−1)
µ (v) =

( m∏
j=1

c−1
j

)
φ(1,...,µ−1,µ+1,...,m)(v) (1 6 µ 6 m) . (3.17)

What follows gives an explicit formula for these quantities.
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Theorem 3.2.For 26 m 6 n we have

φ∗(m−1)
µ (v) = φ̄∗(m−1)

µ (v)
∏

16κ<λ6m
κ,λ6=µ

[πκλ] . (3.18)

In addition, we have the following inversion identities.

Theorem 3.3.∣∣∣∣∣∣∣∣∣∣

φ1
(
v − n−1

2

)
φ1

(
v − n−3

2

) · · · φ1(v + n−1
2 )

φ2
(
v − n−1

2

)
φ2

(
v − n−3

2

) · · · φ2(v + n−1
2 )

...
...

. . .
...

φn

(
v − n−1

2

)
φn

(
v − n−3

2

) · · · φn(v + n−1
2 )

∣∣∣∣∣∣∣∣∣∣
=

∏
16κ<λ6n

[πκλ] × id . (3.19)

In terms of φ̄∗(n−1)
µ (v), equation (3.19) can alternatively be written in either of the

following ways:
n∑

µ=1

φµ

(
v − n

2

)
φ̄∗(n−1)

µ (v)
∏

16λ6n
λ6=µ

[πµλ]−1 = id (3.20)

n∑
µ=1

φ̄∗(n−1)
µ

(
v − n

2

)
φµ(v)

∏
16λ6n
λ6=µ

[πλµ]−1 = id . (3.21)

The proofs of theorems 3.2 and 3.3 will be given in appendix C.

4. Discussion

In this paper we have constructed a free boson realization of the vertex operatorsφµ(u),
φ∗µ(u) for the A

(1)

n−1 face model. As is explained in appendix A, these operators correspond
to the half-infinite transfer matrices on the lattice, and are designed to satisfy the same
commutation relations as the latter. There is, however, a serious difference between the two
which does not allow us to identify them directly. The operatorsφµ(u), φ∗µ(u) are acting on
the direct sumF = ⊕l,k∈P Fl,k of bosonic Fock spaces. On the other hand, the half-transfer
matrices act on the eigenspacesHl,k of the corner transfer matrices. The problem is that
the character ofHl,k is different from that ofFl,k. This is particularly significant for the
calculation of correlation functions, since they are given as the trace of products of vertex
operators over the ‘true’ space of statesHl,k, rather thanFl,k.

Let us discuss this point by taking the casen = 2. In the conformal limitx = 1, Hl,k

becomes the irreducible minimal unitary modules over the Virasoro algebra, and the vertex
operators become the chiral primary fields associated with them. In order to realize these
representations, we need to introduce the BRST charge operatorQ : F → F , Q2 = 0,
and consider Felder’s [14] complex

· · · Q−→Fl−1,k

Q−→Fl0,k

Q−→Fl1,k

Q−→· · · .

In this complex, only the 0th cohomology is non-trivial and gives the irreducible module
Hl,k. At the same time, the BRST chargeQ commutes with the vertex operators so that the
latter are well-defined as operators onHl,k. In the work [7], the construction of the BRST
complex was carried over to the deformed case 0< x < 1 with n = 2 (see also [15]).
Thanks to the commutativity ofQ and the vertex operators, the calculation of the trace over
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Hl,k is reduced to that over the Fock spaces by the Euler–Poincaré principle. In this way, it
was possible in [7] to derive an explicit integral formula for the correlation functions. Thus
the construction of the BRST complex and the calculation of the cohomology forn > 3 is
the remaining important problem. This seems to be a rather non-trivial matter, and to our
knowledge, has not been completely settled even in the conformal limitx = 1 (see, e.g.,
[16]).

In this connection, we note that in the conformal casex = 1 the spacesHl,k are identified
as irreducible representations of theWn-algebra [17, 18]. Aq-deformation of theWn algebra
was introduced in [11, 12], where it is shown that the screening currents employed in the
present paper commute with the generators of theq-deformedW -algebras up to a total
difference. Therefore, we naturally expect that the deformedW -algebra plays the role of
the symmetry algebra for the lattice model, the vertex operators being theq-analogue of
the chiral primary fields.

The vertex operators considered in this paper are ‘type I operators’ in the terminology
of [1–3]. To complete the picture, it would also be interesting to study the bosonization of
type II vertex operators which are responsible for creation/annihilation of excitations in the
lattice model.
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Appendix A. Graphical definition of the vertex operators

In this appendix we outline the method of computing the correlation functions in the
RSOS models with the Boltzmann weights (2.8), (2.9), (2.10). In the restricted model,
the restriction ona is such thata ∈ P+r−n where

P+l =
{

a =
n−1∑
i=1

aiωi ∈ P ; ai > 0,

n−1∑
i=1

ai 6 r − n

}
.

We consider regime III, i.e. the case 0< v < 1. In this regime the ground-state
configurations are parametrized byb ∈ P+r−n−1; a ground-state configuration is one which
consists ofb, b+ω1, b+ω2, . . . , b+ωn−1. We choose and fixb. In our notation, we often
drop theb-dependence.

The corner transfer matricesA(a)(v), B(a)(v), C(a)(v), D(a)(v) are associated with the
four quadrants separated at the centre that takes a fixed statea.

a

C(a)(v)

D(a)(v)

B(a)(v)

A(a)(v)

The partition functionZ is formally given by

Z =
∑

a∈P+r−n

tr D(a)(v)C(a)(v)B(a)(v)A(a)(v) .
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In the large lattice limit, apart from a divergent scalar (independent ofa), the CTMA(a)(v)

is of the form

A(a)(v) ∼ x2vH

where the operatorH is independent ofv. Let us denote byHl,k, where

l = b + ρ k = a + ρ

the space spanned by the eigenvectors ofA(a)(v) with the boundary condition given by the
choice ofb ∈ P+r−n−1. By using equation (2.14), we also have

D(a)(v)C(a)(v)B(a)(v)A(a)(v) ∼ Gax
2nH .

The spectrum ofH is obtained in [10]. Choosing the normalization ofH appropriately
we have

trHl,k
qH = χl,k(q)

where

χl,k(q) = q(1−n)/24(q; q)1−n
∞

∑
σ∈Sn

sgn(σ )θrl−(r−1)σ (k),r(r−1)(q) (A.1)

θµ,m(q) =
∑

α∈∑n−1
j=1 Zαj

q(m/2)|α+µ/m|2 . (A.2)

Note that

χl,k(q) = q(|rl−(r−1)k|2/2r(r−1))+(1−n)/24 (1+O(q)) . (A.3)

In order to compute the correlation functions, we use the half transfer matrices. There
are four kinds of half transfer matrices that are extending to the north, east, west and south
directions:

8
(a1,a2)
N (v) :

a1 · ·

a2 · ·

-

v

-

v
6

-

6

-

6
(A.4)

8
(a1,a2)
E (v) :

a1 · ·

a2 · ·

�

v

�

v
6 6

�

6

�

(A.5)

8
(a1,a2)
W (v) :

a1 · ·

a2 · ·

-

v
?

-

v
? ?

- -

(A.6)

8
(a1,a2)
S (v) :

a1 · ·

a2 · ·
?

�

v
?

�

v
?

� �

. (A.7)
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Let P(a1, . . . , am) be the probability that the local states of successivem sites, say from
1 to m, on the same column, take the valuesa1, . . . , am, respectively. We have

P(a1, . . . , am) = 1

Z
trHl,am+ρ

D(am)(v)8
(am,am−1)

W (v) · · ·8(a2,a1)
W (v)

×C(a1)(v)B(a1)(v)8
(a1,a2)
E (v) · · ·8(am−1,am)

E (v)A(am)(v) . (A.8)

Using the equalities

8
(a,a′)
E (v)A(a′)(v) = A(a)(v)8

(a,a′)
E (0) (A.9)

D(a)(v)8
(a,a′)
W (v) = 8

(a,a′)
S (0)D(a′)(v) (A.10)

we have

P(a1, . . . , am) = 1

Z
trHl,a1+ρ

D(a1)(v)C(a1)(v)B(a1)(v)A(a1)(v)

×8
(a1,a2)
E (0) · · ·8(am−1,am)

E (0)8
(am,am−1)

S (0) · · ·8(a2,a1)
S (0) . (A.11)

We wish to identify the spaceHl,k and the operators8(a′,a)
∗ (u) (∗ = E, S) acting on it

with a certain boson Fock space and bosonized vertex operators. By a routine argument,
we can derive the following commutation relations:

8
(a1,a2)
E (v1)8

(a2,a3)
E (v2) =

∑
a

W

(
a1 a

a2 a3

∣∣∣∣v1− v2

)
8

(a1,a)
E (v2)8

(a,a3)
E (v1)

8
(a1,a2)
S (v1)8

(a2,a3)
E (v2) =

∑
a

W

(
a2 a1

a3 a

∣∣∣∣v1+ v2

)
8

(a1,a)
E (v2)8

(a,a3)
S (v1)

8
(a1,a2)
S (v1)8

(a2,a3)
S (v2) =

∑
a

W

(
a3 a2

a a1

∣∣∣∣v2− v1

)
8

(a1,a)
S (v2)8

(a,a3)
S (v1) .

(A.12)

These relations are satisfied by the bosonized vertex operatorsφµ(v) (3.12) andφ∗(n−1)
µ (v)

(3.18) if we set

8
(a1,a2)
E (v) = φµ(v) (a1

µ← a2) (A.13)

8
(a1,a2)
S (v) = (−1)µ−1φ∗(n−1)

µ

(n

2
− v

) ∏
κ<λ

[πκλ]−1 (a1
µ→ a2) . (A.14)

However, this is not the correct identification because the spacesHl,k andFl,k have different
characters. As discussed in section 4, we expect that the BRST cohomology of certain
complex consisting of the spacesFl,k provides the correct identification of the spaceHl,k.
Under this assumption we can write down an integral formula for the local probabilities.
We will not enter in detail.

Appendix B. Proof of the commutation relations

The operatorφµ(v) is given by (recallzj = x2vj )

φµ(v) =
∮ µ−1∏

j=1

dz

2π izj
η1(v0)ξ1(v1) · · · ξµ−1(vµ−1)

µ−1∏
j=1

f (vj − vj−1, πj,µ) . (B.1)
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For the above integral, we callη1(v0)ξ1(v1) · · · ξµ−1(vµ−1) the operator part, and∏µ−1
j=1 f (vj − vj−1, πj,µ) the coefficient part. We will use these names for similar integrals.

Note that

πα exp

(
−i

√
r − 1

r
Qβ

)
= exp

(
−i

√
r − 1

r
Qβ

)
(πα + (1− r)〈α, β〉) . (B.2)

Therefore, the operator parts and coefficient parts are not commutative. Unless otherwise
stated, we keep coefficient parts to the right of operator parts.

We represent
∏µ−1

j=1 f (vj − vj−1, πj,µ) by the diagram

vµ−1 vµ−2 · · · v1 v0.-πµ−1,µ -πµ−2,µ -π2,µ -π1,µ

(B.3)

Using the commutation relations (C.1)–(C.7), we are to prove

φµ(v1)φµ(v2) = r1(v1− v2)φµ(v2)φµ(v1) (B.4)

φµ(v1)φν(v2) = r1(v1− v2)
{
φν(v2)φµ(v1)b(v1− v2, πµ,ν)

+φµ(v2)φν(v1)c(v1− v2, πµ,ν)
}

(µ 6= ν) (B.5)

where

b(v, w) = [v][w − 1]

[v − 1][w]
c(v, w) = [v − w][1]

[v − 1][w]
. (B.6)

Consider an integral of the form∮
dz

2π izj

dz′

2π iz′j
ξj (vj )ξj (v

′
j )F (vj , v

′
j ) (B.7)

where the integration contours forzj and z′j are the same. Due to equation (C.7), this
integral is equal to∮

dz

2π izj

dz′

2π iz′j
ξj (vj )ξj (v

′
j )h(v′j − vj )F (v′j , vj ) . (B.8)

Observing this we define ‘weak equality’ in the following sense. Suppose two functions
F(vj , v

′
j ) and G(vj , v

′
j ) are coupled toξj (vj )ξj (v

′
j ) in integrals. We say they are equal in

weak sense if

G(vj , v
′
j )+ h(v′j − vj )G(v′j , vj ) = F(vj , v

′
j )+ h(v′j − vj )F (v′j , vj ) . (B.9)

We write

G(vj , v
′
j ) ∼ F(vj , v

′
j ) (B.10)

showing weak equality. To prove the equalities (B.4) and (B.5), it is enough to prove the
equalities of the coefficient parts in this weak sense.

First we will prove (B.4). By using (C.1-C.7) and (B.2), we can rearrange the operator
part asη1(v0)η1(v

′
0)ξ1(v1)ξ1(v

′
1) · · · ξµ−1(vµ−1) iµ−1(v

′
µ−1), and then get the coefficient part

represented by

vµ−1 vµ−2 · · · v1 v0

v′µ−1 v′µ−2 · · · v′1 v′0 .

-πµ−1,µ−1

Q
Q

QQs

0

-πµ−2,µ−1

Q
Q

QQs

0

-π2,µ−1

Q
Q

QQs
0

-π1,µ−1

Q
Q

QQs
0

-πµ−1,µ -πµ−2,µ -π2,µ -π1,µ

(B.11)
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We want to show that this is invariant in weak sense whenv0 andv′0 are exchanged. This
follows immediately by induction from the weak equality

f (v1− v0, w − 1)f (v′1− v′0, w)f (v1− v′0, 0) (B.12)

∼ f (v1− v′0, w − 1)f (v′1− v0, w)f (v1− v0, 0) . (B.13)

Next we prove (B.5) forµ < ν. The caseµ > ν is similar. The equality follows from
the weak equality(A)+ (B)+ (C) ∼ 0 where

(A) = v′µ v′µ−1 · · · v′2 v′1 v′0

vµ−1 · · · v2 v1 v0

-πµ,ν -πµ−1,ν -π3,ν -π2,ν -π1,ν

-
πµ−1,µ

����*
0

-
π3,µ

�����*
0

-
π2,µ

�����*
0

-
π1,µ

�����*
0

(B) = −b(v0− v′0, πµ,ν)

×v′µ vµ−1 · · · v2 v1 v′0

v′µ−1 · · · v′2 v′1 v0

-πµ,ν+1

Q
QQs

0

-πµ−1,ν

Q
Q

QQs
0

-π3,ν

Q
Q

QQs
0

-π2,ν

Q
Q

QQs

0

-π1,ν

Q
Q

QQs

0

-
πµ−1,µ

-
π3,µ

-
π2,µ

-
π1,µ

(C) = −c(v0− v′0, πµ,ν)

× v′µ v′µ−1 · · · v′2 v′1 v0

vµ−1 · · · v2 v1 v′0 .

-πµ,ν -πµ−1,ν -π3,ν -π2,ν -π1,ν

-
πµ−1,µ

�
�

��3
0

-
π3,µ

�
�

��3
0

-
π2,µ

�
�

��3
0

-
π1,µ

�
�

��3
0

We prove this by induction starting from the equality

f (v′1− v′0, w) = b(v0− v′0, w)f (v′1− v′0, w + 1)f (v′1− v0, 0)

+c(v0− v′0, w)f (v′1− v0, w) .

Using the induction hypothesis we modify(B) to (A′)+ (C ′) where

(A′) = −b(v0− v′0, πµ,ν)

b(v′1− v1, πµ,ν)

× v′µ v′µ−1 · · · v′2 v1 v′0

vµ−1 · · · v2 v′1 v0

-πµ,ν -πµ−1,ν -π3,ν -π2,ν -π1,ν

Q
Q

QQs0

-
πµ−1,µ

�
�

��3
0

-
π3,µ

�
�

��3
0

-
π2,µ

�
�

��3
0

-
π1,µ

(C ′) = b(v0− v′0, πµ,ν)c(v
′
1− v1, πµ,ν)

b(v′1− v1, πµ,ν)

× v′µ v′µ−1 · · · v′2 v′1 v0

vµ−1 · · · v2 v1 v′0 .

-πµ,ν -πµ−1,ν -π3,ν -π2,ν -π1,µ

-
πµ−1,µ

�
�

��3
0

-
π3,µ

�
�

��3
0

-
π2,µ

�
�

��3
0

-
π1,ν

�
�

��3
0
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Noting thatb(v′1 − v1, w)h(v′1 − v1) = b(v1 − v′1, w) we can exchangev1 andv′1 in (A′).
Let (A′′) be the term we thus obtain. Note that(A′) ∼ (A′′). Using the equality

b(v′1− v1, w)f (v1− v′0, 0)− b(v0− v′0, w)f (v′1− v0, 0)

= [w − 1][1][v0− v′0+ v1− v′1][v0− v1− 1
2][v′0− v′1+ 1

2]

[w][v′1− v1− 1][v0− v′0− 1][v′1− v0− 1
2][v1− v′0− 1

2]
(B.14)

we have

(A)+ (A′′) = − [1][v0− v′0+ v1− v′1][v1− v0+ 1
2][v′1− v′0− 1

2]

[v1− v′1][v0− v′0− 1][v′1− v0− 1
2][v1− v′0− 1

2]

× v′µ v′µ−1 · · · v′2 v′1 v′0

vµ−1 · · · v2 v1 v0 .

-πµ,ν -πµ−1,ν -π3,ν -π2,ν -π1,ν

-
πµ−1,µ

�
�

��3
0

-
π3,µ

�
�

��3
0

-
π2,µ

�
�

��3
0

-
π1,µ

Using the equality

c(v′1− v1, w1)

b(v′1− v1, w1)
f (v′1− v0, w2)f (v1− v′0, w1+ w2)

− c(v0− v′0, w1)

b(v0− v′0, w1)
f (v1− v′0, w2)f (v′1− v0, w1+ w2)

= [w1][1][ v0− v′0+ v1− v′1][v1− v0+ 1
2 − w2][v′1− v′0+ 1

2 − w1− w2]

[w1− 1][v0− v′0][v1− v′1][v′1− v0− 1
2][v1− v′0− 1

2]

we have

(C)+ (C ′) = [1][v0− v′0+ v1− v′1][v1− v0+ 1
2 − π1,µ][v′1− v′0+ 1

2 − π1,ν ]

[v0− v′0− 1][v1− v′1][v′1− v0− 1
2][v1− v′0− 1

2]

× v′µ v′µ−1 · · · v′2 v′1

vµ−1 · · · v2 v1 v0 .

-πµ,ν -πµ−1,ν -π3,ν -π2,ν

-
πµ−1,µ

�
�

��3
0

-
π3,µ

�
�

��3
0

-
π2,µ

�
�

��3
0

-
0

Comparing these expressions, we have(A)+ (A′′)+ (C)+ (C ′) = 0.

Appendix C. Proof of theorems 3.2 and 3.3

In this appendix we give a proof of the bosonization formulae for the operatorsφ∗(m)
µ (v). For

convenience we list below formulae for the contractions ofηj (v) = Uωj
(z), ξj (v) = U−αj

(z):

Uω1(z1)Uωm
(z2) = z

((r−1)/r)(n−m)/n

1 gm(z2/z1) : Uω1(z1)Uωm
(z2) : (C.1)

Uωm
(z2)Uω1(z1) = z

((r−1)/r)(n−m)/n

2 gm(z1/z2) : Uω1(z1)Uωm
(z2) : (C.2)

U−αj
(z1)Uωj

(z2) = z
−(r−1)/r

1 s(z2/z1) : U−αj
(z1)Uωj

(z2) : (C.3)

Uωj
(z2)U−αj

(z1) = z
−(r−1)/r

2 s(z1/z2) : U−αj
(z1)Uωj

(z2) : (C.4)
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U−αj
(z1)U−αj+1(z2) = z

−(r−1)/r

1 s(z2/z1) : U−αj
(z1)U−αj+1(z2) : (C.5)

U−αj+1(z2)U−αj
(z1) = z

−(r−1)/r

2 s(z1/z2) : U−αj
(z1)U−αj+1(z2) : (C.6)

U−αj
(z1)U−αj

(z2) = z
2(r−1)/r

1 t (z2/z1) : U−αj
(z1)U−αj

(z2) : . (C.7)

Here

s(z) = (x2r−1z; x2r )∞
(xz; x2r )∞

(C.8)

t (z) = (1− z)
(x2z; x2r )∞

(x2r−2z; x2r )∞
. (C.9)

For all other combinations exceptUωj
(z1)Uωk

(z2), we haveXY =: XY : .
Let us assign a weight to these operators by setting wtUωj

(z) = ωj , wt U−αj
(z) = −αj

and wt(XY) = wt(X)+wt(Y ). Then wtφµ(v) = ε̄µ, wt φ̄∗(m−1)
µ (v) = ωm − ε̄µ. It is useful

to note that

πµνX = X
(
πµν + (1− r)

〈
εµ − εν, wt X

〉)
. (C.10)

Lemma C.1.For 16 µ 6 m we have

φµ(v)φ̄∗(m−1)
µ (v′) = −rm−1(v − v′)

×
m∑

ν=1

φ̄∗(m−1)
ν (v′)φν(v)

[v − v′ − m
2 + 1− πµν ]

[v − v′ − m
2 ]

∏
16κ6m

κ 6=ν

[1− πµκ ]

[πνκ ]
. (C.11)

Proof. Setv0 = v, vm = v′. As before we writezj = x2vj .
Using equations (3.12), (3.15) and (C.10), we find

cmφµ(v)φ̄∗(m−1)
µ (v′) = (−1)m−1

m−1∏
j=1

∮
dzj

2π izj
η1(v0)ξ1(v1) · · · ξm−1(vm−1)ηm−1(vm)

×
m∏

j=1

f (vj − vj−1, 1− πµj ) . (C.12)

Here we used [u+ r] = −[u]. Similarly we have

cmrm−1(v − v′)φ̄∗(m−1)
ν (v′)φν(v)

= −
m−1∏
j=1

∮
dzj

2π izj
η(v0)ξ1(v1) · · · ξm−1(vm−1)ηm−1(vm)

m∏
j=1

f (vj − vj−1, πjν) .

(C.13)

The lemma is proved if we show that (C.11) is valid at the level of the integrands of
(C.12), (C.13). This amounts to showing that

(−1)m−1
m∏

j=1

f (vj − vj−1, 1− πµj )

=
m∑

ν=1

m∏
j=1

f (vj − vj−1, πjν)
[v0− vm − m

2 + 1− πµν ]

[v0− vm − m
2 ]

∏
16κ6m

κ 6=ν

[1− πµκ ]

[πνκ ]
.

(C.14)
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Consider the function

F(u) =
( m∏

j=1

[vj − vj−1+ 1
2 − πj + u]

[−πj + u]

)
[v0− vm − m

2 + 1− πµ + u]

[1− πµ + u]
.

This is an elliptic function inu. Setting the sum of its residues to zero, we obtain

0= (−1)m
m∏

j=1

(
[vj − vj−1− 1

2 + πµj ]

[1− πµj ]

) [
v0− vm − m

2

]

+
m∑

ν=1

( m∏
j=1

[vj − vj−1+ 1

2
+ πνj ]

)
[v0− vm − m

2 + 1− πµν ]

[1− πµν ]

∏
16κ6m

κ 6=ν

[πνκ ]−1

which is the desired identity (C.14). �

Lemma C.2.

η1

(
v − m− 1

2

)
ξ1

(
v − m− 2

2

)
· · · ξm−1(v)ηm−1

(
v + 1

2

)
= (x2r; x2r )3(m−1)

∞ cmηm(v) .

(C.15)

This can be verified by a direct calculation using equations (C.1)–(C.7).

Lemma C.3.
m∑

µ=1

φµ

(
v − m− 1

2

)
φ̄∗(m−1)

µ

(
v + 1

2

) ∏
16λ6m

λ6=µ

[πµλ]−1 = ηm(v) = cm+1φ̄
∗(m)

m+1(v) . (C.16)

Proof. Using equation (C.12) we find that the left-hand side becomes

c−1
m

m∑
µ=1

(−1)m−1
∮

Cµ

m−1∏
j=1

dzj

2π izj
η1(v0)ξ1(v1) · · · ξm−1(vm−1)ηm−1(vm)Fµ(v1, . . . , vm−1)

(C.17)

where

Fµ(v1, . . . , vm−1) =
∏

16j (6=µ)6m

f (vj − vj−1, 1− πµj )

[πµj ]

and

v0 = v − m− 1

2
vm = v + 1

2
.

Note thatf (v, 1) = 1. The contourCµ is chosen as

Cµ : |zj | = x−m+j+1(|z| + jε) (1 6 j 6 µ− 1)

|zj | = x−m+j+1(|z| − (m− j)ε) (µ 6 j 6 m− 1)
(C.18)

whereε > 0 is a small number.
Consider now the elliptic function

F(u) =
m∏

j=1

[vj − vj−1− 1
2 + u− πj ]

[vj − vj−1− 1
2][u− πj ]

.
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Applying the residue theorem toF(u), we find

m∑
µ=1

Fµ(v1, . . . , vm−1) = 0 . (C.19)

In the neighbourhood of the contourCµ, the poles of the integrand of (C.17) are those of
Fµ. In particular, the only pole forz1 is x−m+2z. Let us change the contour forz1 into
|z1| = x−m+2(|z| − ε) for µ > 2. Then the resulting integrals can be taken on a contour
common to allµ. Due to equation (C.19), the sum gives zero. Therefore the right-hand
side of (C.17) can be replaced by its residue atz1 = x−m+2z:

c−1
m

m∑
µ=2

(−1)m−1
∮

C ′µ

m−1∏
j=2

dzj

2π izj
η1(v0)ξ1(v1) · · · ξm−1(vm−1)ηm−1(vm)

×Resv1=v−(m−2)/2 Fµ(v1, . . . , vm−1)
dz1

z1

= c−1
m A

m∑
µ=2

(−1)m−2
∮

C ′µ

m−1∏
j=2

η1(v0)ξ1(v1) · · · ξm−1(vm−1)ηm−1(vm)

×F ′µ(v2, . . . , vm−1)

where nowv0 = v − (m− 1)/2, v1 = v − (m− 2)/2 and

F ′µ(v2, . . . , vm−1) =
∏

26j (6=µ)6m

f (vj − vj−1, 1− πµj )

[πµj ]

A = −Resv=0
1

[v]

dz

z
= 1

(x2r; x2r )3∞
.

The contourC ′µ is given by (C.18) withj > 2. The functionF ′µ and the contourC ′µ have
the same structure asFµ andCµ, except that the number of integration variables is one less.
Repeating this processm− 1 times, we arrive at the result

c−1
m Am−1η1

(
v − m− 1

2

)
ξ1

(
v − m− 2

2

)
· · · ξm−1(v)ηm−1

(
v + 1

2

)
.

Equation (C.16) now follows from lemma C.2. �

Lemma C.4.If µ 6 ν, then

φµ(v)φ̄∗(n−1)
ν

(
v − n

2

)
= Aµδµν × id . (C.20)

where

Aµ = (−1)n−1 1

2x2r (x2)

n∏
k=1

[1+ πkµ] .

Proof. Suppose thatµ < ν. Then it is easy to see that

φµ(v)φ̄∗(n−1)
ν (v′) = rn−1(v − v′)φ̄∗(n−1)

ν (v′)φµ(v) .

As v′ → v − n/2, φ̄∗(n−1)
ν (v′)φµ(v) is regular, whilern−1(v − v′) has a simple zero. This

shows (C.20) forµ < ν.
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Suppose next thatµ = ν. Then

φµ(v)φ̄∗(n−1)
µ (v′) = −c−1

n rn−1(v − v′)

×
n−1∏
j=1

∮
dzj

2π izj
ηn−1(v

′)ξn−1(vn−1) · · · ξ1(v1)η1(v)

n∏
j=1

f (vj−1− vj , πµj ) .

The contour is

|zj | = x−j (|z| − jε) (1 6 j 6 µ− 1)

|zj | = xn−j (|z′| + (n− j)ε) (µ 6 j 6 n− 1)

|zµ| < x−1|zµ−1| .
As v′ → v − n/2, the contour is pinched butrn−1(v − v′) has a zero. The limit is then
calculated by successively taking the residues atvj = vj−1 − 1/2 for 1 6 j 6 µ − 1 and
vj = vj+1+ 1/2 for µ 6 j 6 n− 1. Calculating similarly as in lemma C.3 we find

(−1)nc−1
n (x2r; x2r )−3(n−1)

∞ lim
v→0

rn−1(v + n
2)

[v]

×ηn−1

(
v − n

2

)
ξn−1

(
v − n− 1

2

)
· · · ξ1

(
v − 1

2

)
η1(v)

n∏
j=1

[1+ πjµ]

= (−1)n−1 1

2x2r (x2)
ηn

(
v − 1

2

) n∏
j=1

[1+ πjµ] .

Noting thatηn(v) = Uωn
(z) = 1, we obtain the lemma. �

Proof of theorem 3.2.Set

φ∗(m)
µ (v) = φ̃∗(m)

µ (v)
∏

16κ<λ6m+1
κ,λ6=µ

[πκλ] .

We show that

φ̃∗(m)
µ (v) = φ̄∗(m)

µ (v) (C.21)

by induction onm. The casem = 1 is trivially true. Consider first the caseµ = m+1. By
the definition, we have

φ̃
∗(m)

m+1(v) = c−1
m+1

m∑
µ=1

φµ

(
v − m− 1

2

)
φ̃∗(m−1)

µ

(
v + 1

2

) ∏
16λ6m

λ6=µ

[πµλ]−1 .

Using the induction hypothesis and lemma C.3, we conclude thatφ̃
∗(m)

m+1(v) = φ̄
∗(m)

m+1(v).
Recall thatφ̃∗(m)

µ (v) satisfy the same commutation relation (C.11) asφ̄∗(m)
µ (v). Taking

µ = m+ 1 and computingφm+1(v)(φ̃
∗(m)

m+1(v)− φ̄
∗(m)

m+1(v)) we find

0=
m∑

ν=1

(φ̃∗(m)
ν (v′)− φ̄∗(m)

ν (v′))φν(v)
[v − v′ − m+1

2 + 1− πµν ]

[v − v′ − m+1
2 ]

∏
16κ6m+1

κ 6=ν

[1− πµκ ]

[πνκ ]
. (C.22)

Multiplying φ∗(n−1)
m (v − n/2) from the right, using lemma C.4, we have

0= φ̃∗(m)
m (v′)− φ̄∗(m)

m (v′) .
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Substituting back to (C.22) and multiplyingφ∗(n−1)

m−1 (v − n/2) from the right we obtain

0= φ̃
∗(m)

m−1(v
′)− φ̄

∗(m)

m−1(v
′) .

Continuing this process we get (C.21). �
Proof of theorem 3.3. It suffices to prove an equivalent statement (3.20). This follows as
a special case of (C.16) withm = n. �
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